

# Developing confidence in critical state soil mechanics

# 2. Set Up xls for CamClay

Mike Jefferies, PEng Dr. Dawn Shuttle, PEng

January, 2015



#### Find file...

- Folder: /data\_and\_progs
- CamClay txlu template.xls
  - Has framework
  - Build model on that for *undrained* triaxial compression
  - Has closed form results
- Describe how the xls is set up before going through Cam Clay equations...



### CamClay\_txlu.xls





#### **Soil Property Inputs**





## **Isotropic compression**



Mean effective stress, p': kPa



# **Elasticity**



Mean effective stress, p': kPa



#### Log10 versus Ln

#### Used in theory

• CSL:  $e_c = \Gamma \lambda \ln(p')$ 

■ Elasticity:  $\Delta e = \kappa \Delta p' / p'$ 

#### What the lab reports

• CSL:  $e_c = \Gamma$   $\lambda_{10} \log(p')$ 

■ Elasticity:  $\Delta e = c_r \Delta p' / p'$ 

$$\lambda = \lambda_{10} / 2.3$$

$$\kappa = c_r / 2.3$$

#### **Critical Friction Ratio**





Mean effective stress, p': kPa



#### **Soil Property Inputs**



February 11, 2016





#### **Integration loop**

 $(\mathcal{E}_{q}^{p})_{i+1} = (\mathcal{E}_{q}^{p})_{i} + \Delta \mathcal{E}_{q}^{p} \qquad \dots \text{ step forward } \underline{plastic} \text{ strain step}$ 

- Get state variables
- Apply flowrule =>  $\Delta \mathcal{E}_{v}^{p}$
- Harden yield surface
- Find new stress state
- Add elastic strain incs
- Update e

... G, K,  $M_i$  depend on  $(e, \sigma)$ 

... the other strain increment

... yield surface changes size

... depends on stress path



#### The Integration "Loop"





#### **Euler's method**



February 11, 2016 12