

VGS Workshop critical state soil mechanics 16/17 January, 2015

Copy these files from memstick to your computer...

```
/VGS_CSSM_Jan2015
/data_and_progs stuff you will use today
/notes_and_refs pdf's to mostly save you writing
```


Developing confidence in critical state soil mechanics

1. Stress measures & Euler Integration

Mike Jefferies, PEng Dr. Dawn Shuttle, PEng

Learning goals

- CSSM is more than Cam Clay
 - Complete, quantitative framework of soil behaviour
 - lacksquare Soil properties are independent of e, σ
 - Not locked into semi-log CSL
 - <u>It is simple</u>
- Use in practice
 - Adjust laboratory data for disturbance
 - Site-specific calibration of CPT
 - FE modelling can be done, but not part of this workshop
- More general
 - Affect the way you look at soil as an engineer
 - State parameter rules geotechnics...

Before we talk about soil models...

- 1: You do not have a free choice on stress and strain measures...
 - Why ?
 - What measures to use
- 2: Numerical integration
 - All proper plasticity models are written in terms of strain increment – basic requirement of mechanics
 - Need numerical integration for engineering
 - Integration principles

Principal stresses

Stress and strain invariants (triaxial)

- Desire to make equations independent of measurement "frame"
 - Soils change both volume and shape
 - Soils "frictional" with strength depending on confining stress
 - Want to distinguish each aspect to allow clarity in understanding
- Stress invariants

■ Mean stress (change in volume): p or $\sigma_m = (\sigma_1 + 2 \sigma_3) / 3$

■ Deviator stress (change in shape): q or $\sigma_q = (\sigma_1 - \sigma_3)$

■ Proportion of σ_2 : Bishop's "b" or Lode angle (θ)

Strain invariants

■ Volumetric strain: ε_{v} or $\varepsilon_{m} = (\varepsilon_{1} + \varepsilon_{2} + \varepsilon_{3})$

■ Deviatoric strain: ε_{q} or $\varepsilon_{\gamma}^{= 2/3}$ (ε_{1}^{-} ε_{3})

σ_1 , σ_2 , $\sigma_3 = \sigma_m$, σ_q , θ

February 11, 2016

Stress & strain measures

WORK DONE = Force x Distance Moved

INCREMENTAL WORK PER UNIT VOLUME:

$$\Delta W = \sigma_1 \Delta \varepsilon_1 + \sigma_2 \Delta \varepsilon_2 + \sigma_3 \Delta \varepsilon_3$$

Why restriction on choice of invariants

Plasticity: Materials dissipate <u>work</u> during <u>irrecoverable</u> straining.

Model validity requires getting work correct...

$$\sigma_1 \Delta \varepsilon_1 + \sigma_2 \Delta \varepsilon_2 + \sigma_3 \Delta \varepsilon_3 = \sigma_m \Delta \varepsilon_v + \sigma_q \Delta \varepsilon_q$$

...for TXL =
$$p \Delta \varepsilon_v + q \Delta \varepsilon_q$$

Must use "work conjugate" stress & strain invariants

Work conjugate for triaxial compression

Isotropic component

$$\blacksquare \sigma_{\rm m} = p = (\sigma_1 + 2 \sigma_3) / 3$$

$$\blacksquare \varepsilon_{V} = (\varepsilon_{1} + 2 \varepsilon_{3})$$

Deviatoric component

$$\blacksquare \sigma_{q} = q = (\sigma_{1} - \sigma_{3})$$

$$\blacksquare \varepsilon_{q} = \frac{2}{3} (\varepsilon_{1} - \varepsilon_{3})$$

Lode angle

$$\blacksquare \theta = 30 \deg$$

Strain decomposition (linear)

$$\blacksquare \, \varepsilon_{\mathsf{v}} \, = \, \varepsilon_{\mathsf{v}}^{\, \mathsf{e}} \, + \, \varepsilon_{\mathsf{v}}^{\, \mathsf{p}}$$

$$\blacksquare \mathcal{E}_{q} = \mathcal{E}_{q}^{e} + \mathcal{E}_{q}^{p}$$

See "Appendix A" in workshop file package for full definitions/derivations of 3D generalization

Integration: why?

$$\Delta \sigma_{1,2,3} = f(\sigma_{1,2,3}, e) \delta \varepsilon_q^p$$

$$\sigma = \int_{path} f(\sigma, e) \, \delta \varepsilon_q^p$$

Integration: how

- No closed form solutions (mostly).... NUMERICS
- General situations
 - stress, strain, state varies across loaded body
 - finite element or finite differences
- Laboratory tests
 - "element" tests with soil at "uniform" stress and strain state
 - stress or strain paths controlled by test arrangement (txl : $\Delta q = 3 \Delta p$)
 - allows direct numerical integration of plasticity model

Integration: method

14

February 11, 2016

Euler's method

15

February 11, 2016