

Developing confidence in critical state soil mechanics

11. Determining ψ insitu – the CPT

Mike Jefferies, PEng Dr. Dawn Shuttle, PEng

Calibration chamber for the CPT

...see Book for complete set of world's calibration chamber data

Esso Resources Canada, Dome Petroleum, Gulf Canada Resources

Sorting out CPT "interpretation"

BASIC ISSUES

- 1) How stress level affects q_c-D_r
- 2) How soil properties affect q_c-D_r
- 3) And what about silts?

Getting ψ from the CPT

Been et al (1987)

Esso Resources Canada, Dome Petroleum, Gulf Canada Resources

Sladen's intervention...

At some point you have to do "the math"

- Need large displacement computations
 - 'moving mesh' convects work and this needs including in solution
 - convection also depends on dilation
 - Appears simple, but actually rather sophisticated numerics

Approach

- Verify numerical implementation against constant friction,
 constant dilation soil for which "semi" closed-form solutions exist
- Verify numerical implementation of NorSand against direct integration for laboratory element tests
- Combine two verified modules to compute CPT behaviour

Time to "fess up"...

Effect of G_{max} on Ticino CPT calibration

"Variable exponent" normalizations of CPT data are attempting to approximate the effect of G_{max} on the penetration resistance (and doing so badly)

February 11, 2016

Site-specific CPT calibration

- Cavity expansion of NorSand is a pretty good analogue to CPT penetration resistance in calibration chambers
- Determine soil properties
 - M, N, λ_{10} , χ , H... reconstituted samples
 - Measure G_{max} insitu
 - And then there is K_0 ... 0.7 in alluvial deposits ?
- Use numerical method
 - Trend-fits for parametric simulations... in hand out
 - Use "widget"

What about variable geology?

Moving from sands to silts: $Q(1-B_q) + 1$

Understanding CPT via numerics...

February 11, 2016 12

$$Q_p = \frac{q_t - p}{\bar{p}} = k \exp(-m\psi)$$